

Troubleshooting .NET Applications - Knowing Which
Tools to Use and When

Document Version 1.0

Troubleshooting .NET Applications - Knowing Which Tools to Use and When

2

Abstract

There are three fundamental classifications of problems encountered with distributed applications
deployed to production servers. The source of failures, as well as the nature of production
environments, needs to be considered when selecting tools for production level monitoring and
troubleshooting. This white paper will address two categories of application errors, and will
demonstrate the use of ADPlus for pinpointing the root cause of application crashes, and AVIcode
Intercept Studio for pinpointing the root cause of functional errors.

This document shall not be duplicated or used for any purposes other than that for which it is being provided. The information
disclosed herein was originated by and is the property of AVIcode Inc. and except for rights expressly granted by written consent,
such information shall not be disclosed or disseminated in whole or in part. AVIcode reserves all rights hereto. The word AVIcode
and Intercept and the AVIcode and Intercept logos are service marks of AVIcode™ Inc. Throughout this document, other
trademarked names may be used. Rather than put a trademark symbol in every occurrence of a trademarked name, we state that we
are using the names only in an editorial fashion, and to the benefit of the trademark owner, with no intention of infringement.

©2004 AVIcode. All rights reserved. AVIcode and Intercept Studio are trademarked. All other trademarks are the property of
their respective owners. 10/04

Troubleshooting .NET Applications - Knowing Which Tools to Use and When

3

Introduction

Typically, three types of application problems occur in production:

1. Application Crashes

2. Functionality Failures

3. Logical issues

Application crashes result from memory leaks (where failures to reclaim discarded
memory eventually lead to collapse due to memory exhaustion), thread contentions
(where a thread makes unreasonable demands on the CPU by competing for
resources) and thread deadlocks (where processes are blocked waiting for
requirements that cannot be satisfied). Any one of these issues can be severe enough
to cause an unexpected shutdown of services, because either IIS restarts the process
or the entire system crashes. These problems are severe and affect your entire user
population, leaving them frustrated and your help desk flooded with calls.

Functionality failures occur when a particular part of an application does not behave
as it was designed to do (such as when a button does not work), experiences an
unexpected situation (which equate to unhandled exceptions in the code) and
performance degradations. These failures result in complaints from users who do not
get what they expected, and users abandoning their sessions completely because of
slow response times.

Logical issues tend to be detected and reported by the end user. These problems are
only addressable through understanding the business process and making corrections
as needed.

This white paper will speak to the first two matters, application crashes and
functionality failures, and will outline the best approach for troubleshooting each of
them.

Challenges of Production Monitoring

All developers have all debugged applications, using tools built into the IDE or
manual techniques like logging. The development environment makes it easy to test
out potential software fixes, and then develop a new solution if they fail.

In the production environment, the immediate goal shifts from fixing the problem to
providing a solution as quickly as possible without disrupting the activities of the end
users. This goal is more difficult to attain because:

• Access to the production environment may be limited. For example, security
requirements may limit access to logs that contain sensitive data.

• The same tools used in development are either not available or are impractical to
use in production.

Troubleshooting .NET Applications - Knowing Which Tools to Use and When

4

• Debugging techniques must be non-intrusive. For example, you can not stop IIS
in order to debug a single application thread, or stop an application with
breakpoints to evaluate an issue.

• Debugging via code changes is impossible in production. Whereas you can
iterate multiple times through code changes and testing in development, this
practice is too disruptive for a production server.

Debugging Techniques

As we have already discussed, the tools used for production debugging are different
from those used in development. Additionally, each category of application issue
requires a different debugging technique.

For application crashes, the Microsoft Debugging SDK (ADPlus.vbs, WinDBG, SOS
etc) is the best tool for examining thread activity in production at the time a problem
occurs. ADPlus monitors the process, traps the error, and creates a dump file, while
WinDbg and SOS.dll allow you to peruse the data within the dump file.

For functionality failures, Microsoft EIF (which requires code instrumentation),
AVIcode Intercept Studio (which does not require any code modifications) are the
best tools for capturing event data. We address debugging these types of failures later
in this document.

To find logical bugs, you may use either the application tracing built into ASP.NET,
or flight recorders, which chronicle all http traffic and function calls. These tools are
difficult to use in a production environment, because they tend to affect system
performance by the amount of information that they collect. And because logical bugs
are in the eye of the beholder (who may be either the end-user or the business analyst
who defined the business logic to begin with), trying to identify the line between bug
and feature is difficult.

Debugging Application Crashes

In this section, we will discuss techniques for taking and analyzing memory dumps to
diagnose application crashes. Although our examples will concentrate on ASP.NET,
the same techniques apply for diagnosing remoting and web services crashes.

Typically, user complaints about application crashes will occur sporadically, with no
obvious reason as to why the server has gone down, and no clear way to reproduce
the problem. Application crashes manifest themselves in applications returning
"Service Unavailable" errors, or in no application response whatsoever. In cases
where IIS restarts the worker process, an error may be present in the Application or
System Event log that looks similar to this one:

'C:\WINDOWS\Microsoft.NET\Framework\v1.1.4322\aspnet_isapi.dll' reported itself
as unhealthy for the following reason: 'Deadlock detected'

Troubleshooting .NET Applications - Knowing Which Tools to Use and When

5

Deadlocks in DLLs are a common cause of application crashes. Other reasons
include high memory usage from memory leaks (a common complaint with .NET
applications and a problem which will cause IIS to restart the application),
unexpected process terminations (which can occur when mixing native and managed
code�, or internal Microsoft issues in IIS.

When trying to debug application crashes, there are two scenarios. The first scenario,
or the "good" scenario (which we will examine), is when you have access to the
server with the issue. The second scenario, or the "bad" scenario, is one where you
have no access to the server with the problem. Good luck plays an important role in
diagnosing issues under the second scenario.

There are two steps to diagnosing an application crash, the first of which is
information gathering and the second is information analysis.

Step 1: Information Gathering Using ADPlus
ADPlus is console-based Microsoft Visual Basic script. It automates the Microsoft
CDB debugger by connecting to one or more processes when they start, and then
produces memory dumps and log files that contain debug output when they terminate
and IIS attempt to restart the process.

ADPlus is designed to debug application crashes due to unhandled exceptions,
memory leaks or deadlocks. It also crash mode that allow gathering first chance
exceptions.

ADPlus supports the following types of exceptions:

• Invalid handle
• Illegal instruction
• Integer divide-by-zero
• Floating-point divide-by-zero
• Integer overflow
• Invalid lock sequence
• Access violation
• Stack overflow
• C++ EH exception
• Unknown exception

In order to use ADPlus, you must know that you have an application crash and be
able to reproduce it. ADPlus can run with either a -hang (to troubleshoot processes
or applications that stop responding) switch, or the -crash switch (to troubleshoot
processes or applications that fail)

To create a dump file, run ADPlus in -crash mode against the Aspnet_wp.exe process,
and then reproduce the problem. Your symbol path must also point to available PDB
files for the application. PDB files permit correlating addresses to names for
unmanaged code, and gathering information about line numbers in source code for
managed code. Build PDB files with your application in release mode, and keep

Troubleshooting .NET Applications - Knowing Which Tools to Use and When

6

them in your back pocket when you release to production in the event that you should
need them for troubleshooting later.

Step 2: Information Analysis
While ADPlus is good for collecting information about a variety of crash events, it is
not designed for analyzing the information.

To analyze the memory dump information you may use either basic or advanced
tools. The basic tools include Visual Studio.NET 2003 (both a managed and native
debugger) and CorDbg (a console-based debugger used to debug managed code.)

Advanced tools for analyzing the information include:

• WinDbg - a native debugger with a graphical user interface, and the tool that we
will use for our analysis

• SOS - a debugger extension capable of displaying managed call stacks and object
data

• CDB - a console program for debugging user-mode applications and drivers

• NTSD - used to debug user mode processes on a test machine

Debugging Functionality Failures

All application crashes are severe, but functionality failures are different, and tools
like ADPlus or CDB cannot catch them. If a developer did not write any try/catch
code where the functionality failure is occurring, the issue will be unknown to the
support staff unless users call and complain.

When some functionality fails, you must have:

• Guaranteed timely and accurate information about the defect

• Enough information to be able to debug, analyze and reproduce the defect

• Guaranteed notifications to the responsible parties

One technique is using EIF (Enterprise Instrumentation Framework) with your code.
This framework enables you to gather enough information, but not without writing
additional code to do so.

The best solution is one that 1) does not require code changes and 2) provides
detailed information at the time the error occurs. AVIcode Intercept Studio meets
both of these criteria.

Capturing Exception Events
Frequently an end-user encounters an error page instead of the expected results. The
error does not contain any particularly useful information, and if it did, it would
require the user to contact someone responsible for the application to relay the

Troubleshooting .NET Applications - Knowing Which Tools to Use and When

7

information. There are no error messages in the event log, the network and server are
running error free, so your Network Operations staff is happy without knowing that
your end user is very unhappy.

The Intercept exception-monitoring agent (X-Mon) attaches to the worker process
w3wp.exe when IIS starts much in the same way that ADPlus does.

Microsoft recommends instrumenting the top-most event handler to write out the call
stack for analysis in the event that an exception occurs. This troubleshooting method
is limited however, because:

• You do not receive any notification of the error unless the end-user calls

• The information in the call stack is static, and does not contain the business
context associated with the business transaction. The stack trace only allows you
to see that the job failed and frames from both Microsoft .NET methods and from
your own code.

The Intercept Studio agent captures information at runtime, and passes that
information to Intercept's own web-based structured event viewer, called SE-Viewer.

Intercept collects information about the complete call stack, highlights the frames
directly related to the event, and marks in red the frame where the exception actually
occurred.

Additionally, the exception-monitoring agent collects the actual values of functional
parameters, local variables and member variables, as well as information about the
object state, all without having to write a single line of code instrumentation. This is
a critical factor to consider when dealing with a production server, particularly one
that you may not have access to.

Finally, Intercept provides details about the source code where the exception
occurred, and provides a link that will open Visual Studio .NET to the exact line of
code with the issue. Notice that the exception information was caught although there
is no try/catch block in the code, nor any other special debugging code.

By installing the X-Mon agent you can collect root cause information in production
and bring it over to developers in development.

In a typical instrumentation scenario, you need to balance the amount of information
collected with the performance impact of the instrumentation itself. This means that
you need to know ahead of time what errors to expect, and what type of information
you will need to debug the issue. If you do not instrument extensively enough, you
may need to add more code to see the values that you need and then redeploy to
production. If you instrument too extensively, you may noticeably slow down the
response time of your application. This is particularly an issue when writing library
functions that other applications will use. Since is no way to predict exactly how the
function may be used, you may waste time writing code to handle an exception that
developer may not care about or regards as a business exception rather than a critical
exception.

Unlike static instrumentation, Intercept Studio's dynamic monitoring allows you to
increase or decrease the amount (or depth) of information collected on the fly, and

Troubleshooting .NET Applications - Knowing Which Tools to Use and When

8

without affecting system performance. Intercept Studio is flexible enough to allow
you to define the number of array members to collect, values for particular objects,
add or remove functions to monitor, and differentiate between critical (unhandled)
and non-critical (handled) exceptions.

Capturing Performance Events
There are several challenges associated with troubleshooting performance issues in
enterprise applications:

• Today’s applications span over multiple components, systems, and even sites

• Performance of applications in production varies depending on resources and
environment state

• The performance of each component contributes to the overall performance of the
application, and thus to the end-user’s experience

Application performance tuning is not a simple as it was when applications were all
on one box. Distributed applications are affected not only by the performance of each
box, but also by the environment, including the state of the network and components
that over which you do not have control. In this section, we will discuss performance
monitoring in terms of application performance dependencies, the individual
application components that participate in distributed business transactions and what
factors affect the performance of each component.

The performance of distributed applications is dependent on:

• Application component code execution time (the code itself), which has no
serious dependency on the execution environment and can be optimized during
development using profilers.

• Resource request execution time, which varies depending on the environment and
resource state, and can be monitored using resource specific profilers. These
resource requests to fulfill the business transact actions include SQL, LDAP,
Exchange, Web Services and TCP/IP server requests.

The code execution time is static, and can be optimized in development using
profilers. Dependencies such as the number of processors and required RAM can all
be tested in development.

You cannot test resource request execution time in development. Clients with BMC
storage devices find that pre-deployment performance tests do not predict the
performance issues that arise with terabyte storage in production. Companies provide
dummy blocks to test your transaction formatting against their external credit card
processing, but these are poor predictors of transaction performance.

For example, a customer who tries to access an extremely slow page may ultimately
abandon the session. He won't call you about the issue, so how will you find out
about the problem and fix it before you lose more customers?

Troubleshooting .NET Applications - Knowing Which Tools to Use and When

9

By attaching the Intercept performance-monitoring agent (P-Mon), and opening SE-
Viewer, we can see a list of performance events for slow performing ASP.NET pages
and web service calls. The list includes each event's essential information: duration,
application source, server name and occurrence date. By browsing the list, we can
see exactly how long it took a transaction to complete.

Intercept allows you to drill down into events to see more details, such as the slowest
nodes in the business transaction. These may be expanded to show all nodes in the
transaction, and expanded farther to see the actual parameters in the transaction.

To simplify the browsing through this distributed transaction, Intercept displays a
graphical chain that allows you to click on various slow nodes and jump into that part
of the transaction. This graphical chain provides enterprise view of your application
performance.

Intercept pinpoints and provides resource specific details about heavy calls that are
causing your application's performance problems, whether they are related to SQL,
Oracle, Web Services or other resource requests. For example, you can copy function
parameter values associated with a slow SQL call and plug them into a SQL query
analyzer.

Intercept collects all of this information without introducing any detectable noise into
the performance of your application.

Troubleshooting .NET Applications - Knowing Which Tools to Use and When

10

Summary

Debugging distributed enterprise applications in a production environment is different
from debugging in a development environment. Production environments require
special tools that will not require access to the production server, and will not
interfere with the continued operation of either the application in question or other
applications on the server.

In this paper, we have addressed how to troubleshoot two of the three types of
application problems that occur on production servers: application crashes and
functionality failures.

Creating a memory dump with ADPlus and analyzing the dump with WinDbg and the
debugger extensions is the best approach for troubleshooting memory leaks, thread
contentions and thread deadlocks.

AVIcode Intercept Studio is the best tool for detecting and troubleshooting
functionality failures line critical exceptions and performance degradation. Intercept
Studio will not impact your production server, and can be tuned on-the-fly to adjust
the amount and depth of information collected.

About AVIcode

AVIcode is a software products company with patented technology and innovative
products to detect and report application faults in interconnected systems. AVIcode
has developed a product line called Intercept Studio, the most complete suite of
application monitoring tools for enterprise application monitoring on the market
today.

AVIcode designs products to protect your software investment by simplifying
maintenance and troubleshooting, dramatically reducing defect resolution time.
Intercept Studio detects software crashes, critical exceptions and performance
degradations of production enterprise applications. Intercept Studio immediately
collects runtime event details and root cause information, and delivers them to the
personnel responsible for the health and management of production applications.
Intercept Studio is currently in use at Fortune 100 companies, and is rapidly being
accepted as the best way to reduce cost and increase customer satisfaction in the ever-
expanding enterprise solution market.

Operating since 1998 and incorporated in 2001, AVIcode is a privately held
Maryland corporation headquartered in Baltimore, MD.

"Setting the Standard for Application Monitoring"
443.543.5858
www.avicode.com
info@avicode.com

Troubleshooting .NET Applications - Knowing Which Tools to Use and When

11

	bp:
	transmit:
	xml: VALID
	document:
	id: 1130524945_121

	envelope:
	id: 1130524943_613
	version: VALID

	user:
	id: VALID

	adobe:
	type: VALID
	version: VALID

	os: VALID
	promo:
	source: In_Network

	token:
	id: NonUnique

	sorry:
	BlanketBean:
	0:
	3:

	TextBean:
	0: Registration information is required to view this document.
	1: To provide or update your registration,
	9: Registration information is required to view this document.
	10: To provide or update your registration,

	reset:
	0:
	2:

	dummy:
	BlanketBean:
	1:
	4:

	5:
	dummy:
	TextBean:
	2: This document is open for viewing in your web browser. Please switch to your browser to read this document.
	3: this document.
	11: This document is open for viewing in your web browser. Please switch to your browser to read this document.
	12: this document.

	close:
	1:
	3:

	4:
	dummy:
	TextBean:
	4: This document is open for viewing in your web browser. Please switch to your browser to read this document.
	13: This document is open for viewing in your web browser. Please switch to your browser to read this document.

	questions:
	BlanketBean:
	2:
	5:

	TextBean:
	5: To access this document, please return to page 1 to complete the form.
	6: By completing this form once, you will have access to all similar documents without needing to register again.
	14: Troubleshooting .NET Applications - Knowing Which Tools to Use and When
	15: To access this document, please complete all fields below and click 'Read Document'.
	16: By completing this form, you agree to the collection, use, disclosure and transfer of the profile information collected herein by TechTarget and the owner of the document. Based on the information provided, you may receive updates from the TechTarget network of IT-specific websites (and/or the document owner) to inform you of the latest White Paper, product, and content launches as they relate to your informational needs.
	17: Once registration is complete, you will have access to all similar documents without having to fill out additional forms.
	18: Abstract:
	19: Learn how to avoid application failures and performance degradations that threaten core business systems and their users worldwide. Gartner confirms that at least 80% of all software released into production will fail due to quality issues; and 70-80% of the cost of ownership of such business applications is related to finding and fixing such errors.
	20: In order to increase productivity and cost savings, it is necessary to find out how to solve this problem of distributed system quality. It is imperative to consider the source of failures as well as the nature of production environments when addressing application issues. This whitepaper addresses two fundamental categories of application errors and demonstrates methods for quickly pinpointing the root cause of functional errors. By proactively monitoring applications, throughout their lifecycle from development to production, you can improve application quality and reliability.
	21: Information entered on this page and other data about your use of the attached document will be stored in a file on your computer and transmitted to TechTarget over the Internet. TechTarget may provide this information to the owners of the document and either party may use this data to contact you and/or track your use of the document. In consideration of access to the attached document, you agree to such storage and uses as more fully described in the

	question:
	user:
	name:
	first: First Name:
	last: Last Name:

	email: Email Address:
	title: Job Title:
	phone: Business Phone:
	company: Company:
	address1: Address 1:
	address2: Address 2:
	city: City:
	state: State/Province:
	zip: Zip/Postal Code:
	country: Country:
	employees: # of Employees:
	department: Department:
	industry: Industry:

	response:
	user:
	name:
	first:
	last:

	email:
	title:
	phone:
	company:
	address1:
	address2:
	city:
	state: []
	zip:
	country: [US]
	employees: []
	department: []
	industry: []

	submit:
	4:

	opt-out:
	5:

	link:
	0:

	warning:
	TextBean:
	7: Adobe Reader version 4.1 or higher is needed to view this document.
	8: Please visit http://www.adobe.com for your free upgrade.

	property:
	shouldPop: false
	unsentCount: 3

